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Statistics of the critical percolation backbone with spatial long-range correlations
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We study the statistics of the backbone cluster between two sites separated by digtameedimensional
percolation networks subjected to spatial long-range correlations. We find that the distribution of backbone
mass follows the scaling ansaR(Mg)~Mg (“"Df(Mg/Mg), wheref(x)=(a+ 7x7)exp(—x") is a cutoff
function andM, and » are cutoff parameters. Our results from extensive computational simulations indicate
that this scaling form is applicable to both correlated and uncorrelated cases. We show that the exjganent
be directly related to the fractal dimension of the backbdge and should therefore depend on the imposed
degree of long-range correlations.
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[. INTRODUCTION characterized in terms of their spatial correlatip8% It is
under this framework that the correlated percolation model

Percolation is a useful model to study a variety of system$8—11] represents a more realistic description for the pore
in many fields of science displaying structural disorder andspace in terms of structure and transport. In a previous work
statistical self-similarity. In particular, the percolation geom-[12], the hydrodynamic dispersion behavior of percolation
etry has been frequently used as a simple paradigm to inveforous media with spatial correlations has been investigated.
tigate fluid flow in porous medifl—3]. In this type of prob- More recently, we studied the displacement dynamics be-
lem, the geometry underlying the system can be verjween two fluids flowing through correlated percolation clus-
complex and display heterogeneous features over a ver@rs[13]. It was found that the presence of correlations can
wide range of length scales, going from centimeters to kilo-Substantially modify the scaling behavior of the distributions
meters[4]. For example, an open question in the modelingof relevant transport properties and, therefore, their univer-
process of oil recovery is the effect of the connectedness dfality class. In the present paper we extend the previous work
the porous medium on the dynamical process of fluid disOf Barthdemy et al. [7] to investigate the effect of spatial
placement. If the pore space is so poorly connected as to Heng-range correlations on the statistics of the backbone
considered macroscopically heterogeneous, one expects tR&ss connecting two “wells” in a two-dimensional percola-
overall behavior of the flowing system to display significanttion geometry. In Sec. I, we present the mathematical model
anomalies. In this way, it is important to investigate the phys10 simulate long-range spatial correlations. The results and
ics of disordered media at a marginal state of connectivityanalysis of the numerical simulations are shown in Sec. Il
for example, in terms of the geometry of the spanning clusteyhile the conclusions are presented in Sec. IV.
at the percolation threshol(®,6].

The most relevant subset of the percolation cluster for Il. MODEL
transport is the conducting backbone. It can be defined as the ] )
cluster that carries the current when a voltage difference is Our model for the porous medium is based on a two-
applied between two sites. Thus the backbone structure alorfimensional site percolation cluster of sizat criticality [5]
determines the conductivity of the whole percolation net-Where correlations among the elementary units of the lattice
work. Recently, BartHémy et al. [7] have shown that the are systematically introducgd0,11. For a given realization
average mass of the backbofid ) connecting two sites in of the correlated net_work, we extract the percolatlon l_Jack—
a two-dimensional system of sizeobeys the scaling form bone between two sites and B separated by an Euclidian
(Mg)~L9%G(r/L), where the functiorG(r/L) can be ap- c_hs_,tancer<L that belong to the infinite cluster and are suf-
proximated by a power law for any value ofL. Their re- ficiently far from the edges of the _system to prevent bound-
sults from numerical simulations withncorrelated struc- &y effects. The correlations are induced by means of the
turesindicate that, for the case where-L, the distribution ~ Fourier filtering method, where a set of random variables
of backbone mass is peaked aroun$. Whenr<L, the u(r) is introduced following a power-law correlation func-

distribution follows a power-law behavior. tion of the form
The fact that the geometry of real rocks is generally ran- B
dom does not necessarily imply that their disordered mor- (u(Nu(r+R))=R™Y [0<y=2]. .y

phology is spatially uncorrelated. In other words, the prob-

ability for a small region in the system to have a givenHerey=2 is the uncorrelated case ae-0 corresponds to
porosity (or permeability may not be independent of the the maximum correlation. The correlated variablgs) are

probability associated with other locations. This is certainlyused to define the occupangyr) of the sites

true for some types of rocks and geological fields where

geometrical and/or transport properties can be adequately {(r)=0[¢—u(r)], (2
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FIG. 1. Log-log plot of the cumulative distribution of backbone ~ FIG. 2. Log-log plot of the distribution of backbone mass of
mass for uncorrelatedy=2, r=8, circle and correlated net- uncorrelated percolation networks for=1024 andr =8 (circles,

works (y=0.5, r =16, squares The solid lines correspond to the 16 (triangles up, 32 (squares 64 (triangles dowi, and 128(dia-

scaling function, Eq(4), with the same values of the parameters Monds. The solid line is the best fit of Ed5) to the data for the
obtained from the best fit to the data of HE). scaling region and lower cutoff, with parametess=0.255, 5

=1.5, andM=3.32x 10",

where0 is the Heaviside step function and the parameiter ) ) _ _ S

is chosen to produce a network at the percolation thresholdation results in terms of their corresponding distributions of
Due to computational limitations, we restricted our simula-Packbone masB(Mg). From Eq.(4), it follows that

tions to two values ofy=2 and 0.5, corresponding to uncor-

related and correlated percolation structures, respectively. P(Mg)~Mg ™ (**Df(Mg/My), 5
For each value ofy, we performed simulations for 100 000

network realizations of size XL, whereL=1024, and dif- where the functiorf(Mg/M;) has the form

ferent values of the “well” distance to compute the distri-

bution P(Mg) and the cumulative distributiofr(Mpg) of n

B Mg)”
backbone mass f(Mg/Mo)=| a+ 7| 17— exﬁ{—(M—) . (6
0 0
F(MB)=J P(M)dM. 3 Figure 2 shows the distributionrB(Mg) generated for the
Mg uncorrelated casey=2) and different values af. They all
display a lower cutoff of order (the smallest backbone pos-
IIl. RESULTS sible is a straight line connecting poingsand B) and an

) ) ~ upper cutoff of orderLPe, where a “bump” can also be
_In Fig. 1 we show the log-log plot of typical cumulative ghserved7]. For comparison, each of these distributions has
distributions of backbone mad§(Mg) for uncorrelated as peen rescaled by its corresponding value at the position of
well as correlated morphologies. It is clear from this figurethis bump. The smaller the distancés between the wells,
that F(Mg) displays power-law behavior for intermediate |arger is the range over which the scaling term of E5).
mass values in both cases. In addition, the scaling region igo|ds, P(Mg)~Mg~@*1. The solid line in Fig. 2 corre-
followed by a sudden cutoff that decays faster than exponensponds to the best nonlinear fit we found for the8 data in
tial. A similar behavior has been observed experimentallyyoth the scaling and cutoff zones with=0.255, Mo=3.32
[14] and through numerical simulatioh$5-18 for the phe-  x 10* and »=1.5. Because the sampling of the backbone
nomenon ofimpact fragmentationBased on these features, mass should be equivalent to the sampling of blobs in the
we argue thaF(Mg) should obey the following scaling an- percolation clustef19], it is possible to draw a direct rela-
satz: tion between the scaling exponemtand the fractal dimen-
sion of the backbonE20]. Accordingly, the exponent gov-
%)’7 4) erning the blob size distribution can be calculated 7as
Mo =d/dg+1. Since the exponent=a+ 1 governs the statis-
tics of the entire backbone, we obtain by integration that
where « is a scaling exponent antfl, and » are cutoff =d/dg—1, which gives a fractal dimension afz~1.6.
parameters. For comparison with the approach presented iFhis is in good agreement with the current numerical esti-
Ref.[7], here we determine these parameters from the simumate ofdg=1.6432+0.0008[21].

F(MB)~Mg“exr{—
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FIG. 4. Log-log plot of the average backbone mébks) for
correlated structuresy=0.5) against the distanaefor L=1024
(circles, 512 (triangles, and 256(squares The inset shows the
best data collapse obtained by rescalMg andr to L% andL,
respectively. The least-squares fit to the data gives the scaling ex-
ponenty=0.17+0.03.

FIG. 3. Log-log plot of the distribution of backbone mass of
correlated percolation networks fbr=1024 and = 16 (circles, 32
(triangles up, 64 (squarep and 128triangles down The solid line
is the best fit of Eq(5) to the data for the scaling region and lower
cutoff, with parametersr=0.075, = 2.0, andM ,=5.4X 10°. The
degree of correlation ig=0.5.

againstr for y=0.5 and three different values &f The
“approximation proposed in Ref7] for uncorrelated net-
works whenr <L reveals thafMg) should scale as

We now turn to the case with spatial long-range correla
tions. As shown in Fig. 3, Eq5) (solid line) also fits very
well the simulation data forP(Mg) with y=0.5 andr
=16, both in the scaling region and in the cutoff zone. The
parameter set obtained with a nonlinear estimation algorithm

includesa=0.075,Mo=5.4x10°, and7=2. Compared t0 o0 o exponent is the codimension of the fractal back-
the uncorrelated geometry, the results shown in Fig. 3 foBone ie.g=d—ds. Using Eq.(7) anddg=1.85, the inset
y LELWU— B- . B— 4 ,

large masses clearly indicate the presence of a narrow pl%—f Fig. 4 shows the data collapse obtained by rescaling
teau followed by a much more pronounced bump and a . .

; . . andr to the corresponding values bf andL, respectively.
sharper cutoff profile. These features are consistent with thErom the least-squares fit to the data in the scaling region
exponenta~0 and also reflect the fact thatis significantly q g region,
larger for the correlated case. The resulting fractal dimension 3 . .
of the backbonalz~1.86 is in good agreement with previ-
ous estimates for correlated structures generated with A%,
- o L=512
=0.5[10,13. 5 %

For completeness, we show that the scaling ansatz used t o L=256
fit the simulation results foP(Mg) is consistent with the o |
observed behavior foF(Mg) over the whole range of rel-
evant backbone masses. Precisely, the solid lines in Fig. :
correspond to Eq.3) with the same set of parameters used to
fit the simulation data fory=0.5 and 2 in terms of Eq5).
Although close to zero, the value af=0.075 for the corre- 1L
lated geometry is sufficiently large to characterize the power- 4
law signature of the cumulative mass distributiBMg). °©
The differences in the exponent obtained for correlated 8
and uncorrelated cases can be explained in terms of the mo B
phology of the conducting backbone. As decreases, the o Lo
backbone becomes gradually more comgdd€i. This dis-
tinctive aspect of the correlated geometry tends to increase
the value ofdg, and therefore reduce the value @fas the FIG. 5. Data collapse of the distribution of backbone mass for
strength of the long-range correlations increa@es, y de-  correlated networks=0.5) and three values af~L. For each
creasep As in Ref.[7], here we also investigate the scaling value ofL, 100 000 realizations have been generated to produce the
behavior of the average backbone m@ds), but for a cor-  statistics. Equatioii) with dg=1.86 has been used to collapse the
related geometry. In Fig. 4 we show the log-log plot bfg) results.

(Mg)~L%~Vr?, (7)

A L=128

]
o
0o g

P(M,)L
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we obtain the exponent=0.17+0.03. This result is in good IV. SUMMARY
agreement with the estimated value 0.15 for the fractal codi- \ye have studied the scaling characteristics of the back-
mension. bone mass distribution between two sites in two-dimensional

Finally, it is also interesting to investigate the case whergyercolation lattices subjected to long-range correlations. A
r~L. As for uncorrelated clustefg], we expect the distri- scaling ansatz that is capable of describing the power-law
bution P(Mg) for correlated geometries to obey the simpleregion as well as the complex details of the cutoff profile is
scaling form proposed, and it is shown to be applicable for both correlated

and uncorrelated structures. Based on the results of extensive
simulations, we find that the presence of long-range correla-

1 Mg tions can substantially modify the scaling exponents of these
P(MB)~—dg | (8) distributions and, therefore, their universality class. We ex-
L™ \L" plain this change of behavior in terms of the morphological

differences among uncorrelated and correlated pore spaces
generated at criticality. Compared to the uncorrelated case,
whereg is a scaling function. In Fig. 5 we show results from the backbone clusters with spatial long-range correlations
simulations with correlated networks generated with0.5 have a more compact geometry. The level of compactness
for r~L and three different values df. It can be seen that depends, of course, on the degree of correlatipnstro-
the probability distribution is peaked around an averageluced during the generation process.
value (Mg) of the order ofL%. As depicted, Eq(8) can
indeed be used to collapse the data. The value adopted for ACKNOWLEDGMENTS
the fractal dimension of the backbordy=1.86, is compat- This work was supported by CNPqg, CAPES, and FUN-
ible with the corresponding degree of correlation imposed. CAP.
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