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Statistics of the critical percolation backbone with spatial long-range correlations
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We study the statistics of the backbone cluster between two sites separated by distancer in two-dimensional
percolation networks subjected to spatial long-range correlations. We find that the distribution of backbone
mass follows the scaling ansatz,P(MB);MB

2(a11)f (MB /M0), where f (x)5(a1hxh)exp(2xh) is a cutoff
function andM0 andh are cutoff parameters. Our results from extensive computational simulations indicate
that this scaling form is applicable to both correlated and uncorrelated cases. We show that the exponenta can
be directly related to the fractal dimension of the backbonedB , and should therefore depend on the imposed
degree of long-range correlations.
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I. INTRODUCTION

Percolation is a useful model to study a variety of syste
in many fields of science displaying structural disorder a
statistical self-similarity. In particular, the percolation geo
etry has been frequently used as a simple paradigm to in
tigate fluid flow in porous media@1–3#. In this type of prob-
lem, the geometry underlying the system can be v
complex and display heterogeneous features over a
wide range of length scales, going from centimeters to k
meters@4#. For example, an open question in the model
process of oil recovery is the effect of the connectednes
the porous medium on the dynamical process of fluid d
placement. If the pore space is so poorly connected as t
considered macroscopically heterogeneous, one expect
overall behavior of the flowing system to display significa
anomalies. In this way, it is important to investigate the ph
ics of disordered media at a marginal state of connectiv
for example, in terms of the geometry of the spanning clus
at the percolation threshold@5,6#.

The most relevant subset of the percolation cluster
transport is the conducting backbone. It can be defined as
cluster that carries the current when a voltage differenc
applied between two sites. Thus the backbone structure a
determines the conductivity of the whole percolation n
work. Recently, Barthe´lémy et al. @7# have shown that the
average mass of the backbone^MB& connecting two sites in
a two-dimensional system of sizeL obeys the scaling form
^MB&;LdBG(r /L), where the functionG(r /L) can be ap-
proximated by a power law for any value ofr /L. Their re-
sults from numerical simulations withuncorrelated struc-
tures indicate that, for the case wherer'L, the distribution
of backbone mass is peaked aroundLdB. When r !L, the
distribution follows a power-law behavior.

The fact that the geometry of real rocks is generally r
dom does not necessarily imply that their disordered m
phology is spatially uncorrelated. In other words, the pro
ability for a small region in the system to have a giv
porosity ~or permeability! may not be independent of th
probability associated with other locations. This is certai
true for some types of rocks and geological fields wh
geometrical and/or transport properties can be adequa
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characterized in terms of their spatial correlations@3#. It is
under this framework that the correlated percolation mo
@8–11# represents a more realistic description for the p
space in terms of structure and transport. In a previous w
@12#, the hydrodynamic dispersion behavior of percolati
porous media with spatial correlations has been investiga
More recently, we studied the displacement dynamics
tween two fluids flowing through correlated percolation clu
ters @13#. It was found that the presence of correlations c
substantially modify the scaling behavior of the distributio
of relevant transport properties and, therefore, their univ
sality class. In the present paper we extend the previous w
of Barthélémy et al. @7# to investigate the effect of spatia
long-range correlations on the statistics of the backb
mass connecting two ‘‘wells’’ in a two-dimensional percol
tion geometry. In Sec. II, we present the mathematical mo
to simulate long-range spatial correlations. The results
analysis of the numerical simulations are shown in Sec.
while the conclusions are presented in Sec. IV.

II. MODEL

Our model for the porous medium is based on a tw
dimensional site percolation cluster of sizeL at criticality @5#
where correlations among the elementary units of the lat
are systematically introduced@10,11#. For a given realization
of the correlated network, we extract the percolation ba
bone between two sitesA and B separated by an Euclidia
distancer !L that belong to the infinite cluster and are su
ficiently far from the edges of the system to prevent bou
ary effects. The correlations are induced by means of
Fourier filtering method, where a set of random variab
u(r ) is introduced following a power-law correlation func
tion of the form

^u~r !u~r1R!&}R2g @0,g<2#. ~1!

Hereg52 is the uncorrelated case andg'0 corresponds to
the maximum correlation. The correlated variablesu(r ) are
used to define the occupancyz(r ) of the sites

z~r !5Q@f2u~r !#, ~2!
©2003 The American Physical Society02-1
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whereQ is the Heaviside step function and the parametef
is chosen to produce a network at the percolation thresh
Due to computational limitations, we restricted our simu
tions to two values ofg52 and 0.5, corresponding to unco
related and correlated percolation structures, respectiv
For each value ofg, we performed simulations for 100 00
network realizations of sizeL3L, whereL51024, and dif-
ferent values of the ‘‘well’’ distancer to compute the distri-
bution P(MB) and the cumulative distributionF(MB) of
backbone mass

F~MB!5E
MB

`

P~M !dM. ~3!

III. RESULTS

In Fig. 1 we show the log-log plot of typical cumulativ
distributions of backbone massF(MB) for uncorrelated as
well as correlated morphologies. It is clear from this figu
that F(MB) displays power-law behavior for intermedia
mass values in both cases. In addition, the scaling regio
followed by a sudden cutoff that decays faster than expon
tial. A similar behavior has been observed experimenta
@14# and through numerical simulations@15–18# for the phe-
nomenon ofimpact fragmentation. Based on these feature
we argue thatF(MB) should obey the following scaling an
satz:

F~MB!;MB
2aexpF2S MB

M0
D hG , ~4!

where a is a scaling exponent andM0 and h are cutoff
parameters. For comparison with the approach presente
Ref. @7#, here we determine these parameters from the si

FIG. 1. Log-log plot of the cumulative distribution of backbon
mass for uncorrelated (g52, r 58, circles! and correlated net-
works (g50.5, r 516, squares!. The solid lines correspond to th
scaling function, Eq.~4!, with the same values of the paramete
obtained from the best fit to the data of Eq.~5!.
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lation results in terms of their corresponding distributions
backbone massP(MB). From Eq.~4!, it follows that

P~MB!;MB
2(a11)f ~MB /M0!, ~5!

where the functionf (MB /M0) has the form

f ~MB /M0!5Fa1hS MB

M0
D hGexpF2S MB

M0
D hG . ~6!

Figure 2 shows the distributionsP(MB) generated for the
uncorrelated case (g52) and different values ofr. They all
display a lower cutoff of orderr ~the smallest backbone pos
sible is a straight line connecting pointsA and B) and an
upper cutoff of orderLDB, where a ‘‘bump’’ can also be
observed@7#. For comparison, each of these distributions h
been rescaled by its corresponding value at the position
this bump. The smaller the distancer is between the wells,
larger is the range over which the scaling term of Eq.~5!
holds, P(MB);MB

2(a11). The solid line in Fig. 2 corre-
sponds to the best nonlinear fit we found for ther 58 data in
both the scaling and cutoff zones witha50.255, M053.32
3104, and h51.5. Because the sampling of the backbo
mass should be equivalent to the sampling of blobs in
percolation cluster@19#, it is possible to draw a direct rela
tion between the scaling exponenta and the fractal dimen-
sion of the backbone@20#. Accordingly, the exponentt gov-
erning the blob size distribution can be calculated ast
5d/dB11. Since the exponenttB5a11 governs the statis
tics of the entire backbone, we obtain by integration thaa
5d/dB21, which gives a fractal dimension ofdB'1.6.
This is in good agreement with the current numerical e
mate ofdB51.643260.0008@21#.

FIG. 2. Log-log plot of the distribution of backbone mass
uncorrelated percolation networks forL51024 andr 58 ~circles!,
16 ~triangles up!, 32 ~squares!, 64 ~triangles down!, and 128~dia-
monds!. The solid line is the best fit of Eq.~5! to the data for the
scaling region and lower cutoff, with parametersa50.255, h
51.5, andM053.323104.
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We now turn to the case with spatial long-range corre
tions. As shown in Fig. 3, Eq.~5! ~solid line! also fits very
well the simulation data forP(MB) with g50.5 and r
516, both in the scaling region and in the cutoff zone. T
parameter set obtained with a nonlinear estimation algori
includesa50.075, M055.43105, andh52. Compared to
the uncorrelated geometry, the results shown in Fig. 3
large masses clearly indicate the presence of a narrow
teau followed by a much more pronounced bump and
sharper cutoff profile. These features are consistent with
exponenta'0 and also reflect the fact thath is significantly
larger for the correlated case. The resulting fractal dimens
of the backbonedB'1.86 is in good agreement with prev
ous estimates for correlated structures generated witg
50.5 @10,13#.

For completeness, we show that the scaling ansatz use
fit the simulation results forP(MB) is consistent with the
observed behavior forF(MB) over the whole range of rel
evant backbone masses. Precisely, the solid lines in Fi
correspond to Eq.~3! with the same set of parameters used
fit the simulation data forg50.5 and 2 in terms of Eq.~5!.
Although close to zero, the value ofa50.075 for the corre-
lated geometry is sufficiently large to characterize the pow
law signature of the cumulative mass distributionF(MB).
The differences in the exponenta obtained for correlated
and uncorrelated cases can be explained in terms of the
phology of the conducting backbone. Asg decreases, the
backbone becomes gradually more compact@10#. This dis-
tinctive aspect of the correlated geometry tends to incre
the value ofdB , and therefore reduce the value ofa as the
strength of the long-range correlations increases~i.e., g de-
creases!. As in Ref. @7#, here we also investigate the scalin
behavior of the average backbone mass^MB&, but for a cor-
related geometry. In Fig. 4 we show the log-log plot of^MB&

FIG. 3. Log-log plot of the distribution of backbone mass
correlated percolation networks forL51024 andr 516 ~circles!, 32
~triangles up!, 64 ~squares!, and 128~triangles down!. The solid line
is the best fit of Eq.~5! to the data for the scaling region and low
cutoff, with parametersa50.075,h52.0, andM055.43105. The
degree of correlation isg50.5.
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againstr for g50.5 and three different values ofL. The
approximation proposed in Ref.@7# for uncorrelated net-
works whenr !L reveals that̂ MB& should scale as

^MB&;LdB2cr c, ~7!

where the exponentc is the codimension of the fractal back
bone, i.e.,c5d2dB . Using Eq.~7! anddB51.85, the inset
of Fig. 4 shows the data collapse obtained by rescalingMB
andr to the corresponding values ofLdB andL, respectively.
From the least-squares fit to the data in the scaling reg

FIG. 4. Log-log plot of the average backbone mass^MB& for
correlated structures (g50.5) against the distancer for L51024
~circles!, 512 ~triangles!, and 256~squares!. The inset shows the
best data collapse obtained by rescalingMB and r to L1.85 and L,
respectively. The least-squares fit to the data gives the scaling
ponentc50.1760.03.

FIG. 5. Data collapse of the distribution of backbone mass
correlated networks (g50.5) and three values ofr'L. For each
value ofL, 100 000 realizations have been generated to produce
statistics. Equation~8! with dB51.86 has been used to collapse t
results.
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we obtain the exponentc50.1760.03. This result is in good
agreement with the estimated value 0.15 for the fractal co
mension.

Finally, it is also interesting to investigate the case wh
r'L. As for uncorrelated clusters@7#, we expect the distri-
bution P(MB) for correlated geometries to obey the simp
scaling form

P~MB!;
1

LdB
gS MB

LdB
D , ~8!

whereg is a scaling function. In Fig. 5 we show results fro
simulations with correlated networks generated withg50.5
for r'L and three different values ofL. It can be seen tha
the probability distribution is peaked around an avera
value ^MB& of the order ofLdB. As depicted, Eq.~8! can
indeed be used to collapse the data. The value adopted
the fractal dimension of the backbone,dB51.86, is compat-
ible with the corresponding degree of correlation impose
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IV. SUMMARY

We have studied the scaling characteristics of the ba
bone mass distribution between two sites in two-dimensio
percolation lattices subjected to long-range correlations
scaling ansatz that is capable of describing the power-
region as well as the complex details of the cutoff profile
proposed, and it is shown to be applicable for both correla
and uncorrelated structures. Based on the results of exten
simulations, we find that the presence of long-range corr
tions can substantially modify the scaling exponents of th
distributions and, therefore, their universality class. We
plain this change of behavior in terms of the morphologi
differences among uncorrelated and correlated pore sp
generated at criticality. Compared to the uncorrelated c
the backbone clusters with spatial long-range correlati
have a more compact geometry. The level of compactn
depends, of course, on the degree of correlationsg intro-
duced during the generation process.
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